• Model
  • Plan
  • Builder
  • Sign in
  • Sign up
the terms and conditions of service use Privacy PolicyRefund PolicyCustomer CenterBusiness Information
English한국어
GenDive, Inc.Representative ∣ Minhyeok HamBusiness Registration Number ∣ 449-87-02752
Personal Information Manager ∣ Junhyeok HamBusiness Registration Number ∣ 2025-Gwangju-Dong-0120
Email ∣ info@gendata.krTel ∣ 070-4895-5550

310, 3F, GenDive, 8th, Ace High-end Tower, 84, Gasan Digital 1-ro, Geumcheon-gu, Seoul

© Dev Dive, All rights reserved.

Florence-2-large/od

Object Detection
MIT License
chipmicrosoft

Florence-2: Advancing a Unified Representation for a Variety of Vision Tasks

Model Summary

This is a continued pretrained version of Florence-2-large model with 4k context length, only 0.1B samples are used for continue pretraining, thus it might not be trained well. In addition, OCR task has been updated with line separator ('\n'). COCO OD AP 39.8

This Hub repository contains a HuggingFace's transformers implementation of Florence-2 model from Microsoft.

Florence-2 is an advanced vision foundation model that uses a prompt-based approach to handle a wide range of vision and vision-language tasks. Florence-2 can interpret simple text prompts to perform tasks like captioning, object detection, and segmentation. It leverages our FLD-5B dataset, containing 5.4 billion annotations across 126 million images, to master multi-task learning. The model's sequence-to-sequence architecture enables it to excel in both zero-shot and fine-tuned settings, proving to be a competitive vision foundation model.

Resources and Technical Documentation:

  • Florence-2 technical report.
  • Jupyter Notebook for inference and visualization of Florence-2-large
ModelModel sizeModel Description
Florence-2-base[HF]0.23BPretrained model with FLD-5B
Florence-2-large[HF]0.77BPretrained model with FLD-5B
Florence-2-base-ft[HF]0.23BFinetuned model on a colletion of downstream tasks
Florence-2-large-ft[HF]0.77BFinetuned model on a colletion of downstream tasks

How to Get Started with the Model

Use the code below to get started with the model. All models are trained with float16.

import requests
 
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM 
 
 
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
 
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", torch_dtype=torch_dtype, trust_remote_code=True).to(device)
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
 
prompt = "<OD>"
 
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw)
 
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
 
generated_ids = model.generate(
    input_ids=inputs["input_ids"],
    pixel_values=inputs["pixel_values"],
    max_new_tokens=4096,
    num_beams=3,
    do_sample=False
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
 
parsed_answer = processor.post_process_generation(generated_text, task="<OD>", image_size=(image.width, image.height))
 
print(parsed_answer)

Tasks

This model is capable of performing different tasks through changing the prompts.

First, let's define a function to run a prompt.

import requests
 
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM 
 
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
 
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", torch_dtype=torch_dtype, trust_remote_code=True).to(device)
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
 
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw)
 
def run_example(task_prompt, text_input=None):
    if text_input is None:
        prompt = task_prompt
    else:
        prompt = task_prompt + text_input
    inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
    generated_ids = model.generate(
      input_ids=inputs["input_ids"],
      pixel_values=inputs["pixel_values"],
      max_new_tokens=1024,
      num_beams=3
    )
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
 
    parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
 
    print(parsed_answer)

Here are the tasks Florence-2 could perform:

Caption

prompt = "<CAPTION>"
run_example(prompt)

Detailed Caption

prompt = "<DETAILED_CAPTION>"
run_example(prompt)

More Detailed Caption

prompt = "<MORE_DETAILED_CAPTION>"
run_example(prompt)

Caption to Phrase Grounding

caption to phrase grounding task requires additional text input, i.e. caption.

Caption to phrase grounding results format: {'<CAPTION_TO_PHRASE_GROUNDING>': {'bboxes': [[x1, y1, x2, y2], ...], 'labels': ['', '', ...]}}

task_prompt = "<CAPTION_TO_PHRASE_GROUNDING>"
results = run_example(task_prompt, text_input="A green car parked in front of a yellow building.")

Object Detection

OD results format: {'<OD>': {'bboxes': [[x1, y1, x2, y2], ...], 'labels': ['label1', 'label2', ...]} }

prompt = "<OD>"
run_example(prompt)

Dense Region Caption

Dense region caption results format: {'<DENSE_REGION_CAPTION>' : {'bboxes': [[x1, y1, x2, y2], ...], 'labels': ['label1', 'label2', ...]} }

prompt = "<DENSE_REGION_CAPTION>"
run_example(prompt)

Region proposal

Dense region caption results format: {'<REGION_PROPOSAL>': {'bboxes': [[x1, y1, x2, y2], ...], 'labels': ['', '', ...]}}

prompt = "<REGION_PROPOSAL>"
run_example(prompt)

OCR

prompt = "<OCR>"
run_example(prompt)

OCR with Region

OCR with region output format: {'<OCR_WITH_REGION>': {'quad_boxes': [[x1, y1, x2, y2, x3, y3, x4, y4], ...], 'labels': ['text1', ...]}}

prompt = "<OCR_WITH_REGION>"
run_example(prompt)

Output confidence score with Object Detection

def run_example_with_score(task_prompt, text_input=None):
    if text_input is None:
        prompt = task_prompt
    else:
        prompt = task_prompt + text_input
    inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
    generated_ids = model.generate(
      input_ids=inputs["input_ids"],
      pixel_values=inputs["pixel_values"],
      max_new_tokens=1024,
      num_beams=3,
      return_dict_in_generate=True,
      output_scores=True,
    )
    generated_text = processor.batch_decode(generated_ids.sequences, skip_special_tokens=False)[0]
 
    prediction, scores, beam_indices = generated_ids.sequences, generated_ids.scores, generated_ids.beam_indices
    transition_beam_scores = model.compute_transition_scores(
        sequences=prediction,
        scores=scores,
        beam_indices=beam_indices,
    )
 
    parsed_answer = processor.post_process_generation(sequence=generated_ids.sequences[0], 
        transition_beam_score=transition_beam_scores[0],
        task=task_prompt, image_size=(image.width, image.height)
    )
 
    print(parsed_answer)
 
prompt = "<OD>"
run_example_with_score(prompt)

for More detailed examples, please refer to notebook

Benchmarks

Florence-2 Zero-shot performance

The following table presents the zero-shot performance of generalist vision foundation models on image captioning and object detection evaluation tasks. These models have not been exposed to the training data of the evaluation tasks during their training phase.

Method#paramsCOCO Cap. test CIDErNoCaps val CIDErTextCaps val CIDErCOCO Det. val2017 mAP
Flamingo80B84.3---
Florence-2-base0.23B133.0118.770.134.7
Florence-2-large0.77B135.6120.872.837.5

The following table continues the comparison with performance on other vision-language evaluation tasks.

MethodFlickr30k test R@1Refcoco val AccuracyRefcoco test-A AccuracyRefcoco test-B AccuracyRefcoco+ val AccuracyRefcoco+ test-A AccuracyRefcoco+ test-B AccuracyRefcocog val AccuracyRefcocog test AccuracyRefcoco RES val mIoU
Kosmos-278.752.357.447.345.550.742.260.661.7-
Florence-2-base83.653.958.449.751.556.447.966.365.134.6
Florence-2-large84.456.361.651.453.657.949.968.067.035.8

Florence-2 finetuned performance

We finetune Florence-2 models with a collection of downstream tasks, resulting two generalist models Florence-2-base-ft and Florence-2-large-ft that can conduct a wide range of downstream tasks.

The table below compares the performance of specialist and generalist models on various captioning and Visual Question Answering (VQA) tasks. Specialist models are fine-tuned specifically for each task, whereas generalist models are fine-tuned in a task-agnostic manner across all tasks. The symbol "▲" indicates the usage of external OCR as input.

Method# ParamsCOCO Caption Karpathy test CIDErNoCaps val CIDErTextCaps val CIDErVQAv2 test-dev AccTextVQA test-dev AccVizWiz VQA test-dev Acc
Specialist Models
CoCa2.1B143.6122.4-82.3--
BLIP-27.8B144.5121.6-82.2--
GIT25.1B145.0126.9148.681.767.371.0
Flamingo80B138.1--82.054.165.7
PaLI17B149.1127.0160.0▲84.358.8 / 73.1▲71.6 / 74.4▲
PaLI-X55B149.2126.3147.0 / 163.7▲86.071.4 / 80.8▲70.9 / 74.6▲
Generalist Models
Unified-IO2.9B-100.0-77.9-57.4
Florence-2-base-ft0.23B140.0116.7143.979.763.663.6
Florence-2-large-ft0.77B143.3124.9151.181.773.572.6
Method# ParamsCOCO Det. val2017 mAPFlickr30k test R@1RefCOCO val AccuracyRefCOCO test-A AccuracyRefCOCO test-B AccuracyRefCOCO+ val AccuracyRefCOCO+ test-A AccuracyRefCOCO+ test-B AccuracyRefCOCOg val AccuracyRefCOCOg test AccuracyRefCOCO RES val mIoU
Specialist Models
SeqTR---83.786.581.271.576.364.974.974.2-
PolyFormer---90.492.987.285.089.878.085.885.976.9
UNINEXT0.74B60.6-92.694.391.585.289.679.888.789.4-
Ferret13B--89.592.484.482.888.175.285.886.3-
Generalist Models
UniTAB---88.691.183.881.085.471.684.684.7-
Florence-2-base-ft0.23B41.484.092.694.891.586.891.782.289.882.278.0
Florence-2-large-ft0.77B43.485.293.495.392.088.392.983.691.291.780.5

BibTex and citation info

@article{xiao2023florence,
  title={Florence-2: Advancing a unified representation for a variety of vision tasks},
  author={Xiao, Bin and Wu, Haiping and Xu, Weijian and Dai, Xiyang and Hu, Houdong and Lu, Yumao and Zeng, Michael and Liu, Ce and Yuan, Lu},
  journal={arXiv preprint arXiv:2311.06242},
  year={2023}
}